Fungrim home page

Fungrim entry: dc8251

j(τ)=E43 ⁣(τ)η24 ⁣(τ)j(\tau) = \frac{E_{4}^{3}\!\left(\tau\right)}{\eta^{24}\!\left(\tau\right)}
Assumptions:τH\tau \in \mathbb{H}
TeX:
j(\tau) = \frac{E_{4}^{3}\!\left(\tau\right)}{\eta^{24}\!\left(\tau\right)}

\tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
ModularJj(τ)j(\tau) Modular j-invariant
Powab{a}^{b} Power
EisensteinEEk ⁣(τ)E_{k}\!\left(\tau\right) Normalized Eisenstein series
DedekindEtaη(τ)\eta(\tau) Dedekind eta function
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("dc8251"),
    Formula(Equal(ModularJ(tau), Div(Pow(EisensteinE(4, tau), 3), Pow(DedekindEta(tau), 24)))),
    Variables(tau),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC