Assumptions:
TeX:
\theta_{4}^{4}\!\left(0, \tau\right) = 1 + 8 \sum_{n=0}^{\infty} \frac{2 n {q}^{2 n}}{1 + {q}^{2 n}} - 8 \sum_{n=0}^{\infty} \frac{\left(2 n + 1\right) {q}^{2 n + 1}}{1 + {q}^{2 n + 1}}\; \text{ where } q = {e}^{\pi i \tau} \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
JacobiTheta | Jacobi theta function | |
Sum | Sum | |
Infinity | Positive infinity | |
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("dc7c83"), Formula(Equal(Pow(JacobiTheta(4, 0, tau), 4), Where(Sub(Add(1, Mul(8, Sum(Div(Mul(Mul(2, n), Pow(q, Mul(2, n))), Add(1, Pow(q, Mul(2, n)))), For(n, 0, Infinity)))), Mul(8, Sum(Div(Mul(Add(Mul(2, n), 1), Pow(q, Add(Mul(2, n), 1))), Add(1, Pow(q, Add(Mul(2, n), 1)))), For(n, 0, Infinity)))), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))), Variables(tau), Assumptions(Element(tau, HH)))