Fungrim home page

Fungrim entry: dc6806

det(B0+0B0+1B0+nB1+0B1+1B1+nBn+0Bn+1Bn+n)=k=1nk!=G ⁣(n+2)\operatorname{det}\displaystyle{\begin{pmatrix} B_{0 + 0} & B_{0 + 1} & \cdots & B_{0 + n} \\ B_{1 + 0} & B_{1 + 1} & \cdots & B_{1 + n} \\ \vdots & \vdots & \ddots & \vdots \\ B_{n + 0} & B_{n + 1} & \ldots & B_{n + n} \end{pmatrix}} = \prod_{k=1}^{n} k ! = G\!\left(n + 2\right)
Assumptions:nZ0n \in \mathbb{Z}_{\ge 0}
TeX:
\operatorname{det}\displaystyle{\begin{pmatrix} B_{0 + 0} & B_{0 + 1} & \cdots & B_{0 + n} \\ B_{1 + 0} & B_{1 + 1} & \cdots & B_{1 + n} \\ \vdots & \vdots & \ddots & \vdots \\ B_{n + 0} & B_{n + 1} & \ldots & B_{n + n} \end{pmatrix}} = \prod_{k=1}^{n} k ! = G\!\left(n + 2\right)

n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol Notation Short description
BellNumberBnB_{n} Bell number
Productnf(n)\prod_{n} f(n) Product
Factorialn!n ! Factorial
BarnesGG(z)G(z) Barnes G-function
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("dc6806"),
    Formula(Equal(Det(Matrix(BellNumber(Add(i, j)), For(i, 0, n), For(j, 0, n))), Product(Factorial(k), For(k, 1, n)), BarnesG(Add(n, 2)))),
    Variables(n),
    Assumptions(Element(n, ZZGreaterEqual(0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC