Fungrim home page

Fungrim entry: dbc117

Table of G ⁣(10n)G\!\left({10}^{n}\right) to 50 digits for 0n100 \le n \le 10
nn G ⁣(10n)  (nearest 50D)G\!\left({10}^{n}\right) \; (\text{nearest } 50 \text{D})
01
15056584744960000
23.1036100626369830847879402668101769402280611882492 · 106626
32.0045690761252153894020068969764708165025223902021 · 101172113
47.8913000980387915476627721291099032636382430763247 · 10167396248
56.0203407218068785584794013164002058716523147916958 · 1021742374725
61.0145655480290378725684376810089100792606395451713 · 102674273971959
75.2418488985408575463326646933057662934049190054866 · 10317427852191102
85.7976150706924830557487583722980527113426519510559 · 1036742790669064055
94.1978917865925966071745800658793636650835499429177 · 104174279130405945548
104.8323663133177075948431502316007152775466606093624 · 10467427913765589957090
Definitions:
Fungrim symbol Notation Short description
BarnesGG(z)G(z) Barnes G-function
Powab{a}^{b} Power
Source code for this entry:
Entry(ID("dbc117"),
    Description("Table of", BarnesG(Pow(10, n)), "to 50 digits for", LessEqual(0, n, 10)),
    Table(Var(n), TableValueHeadings(n, NearestDecimal(BarnesG(Pow(10, n)), 50)), TableSplit(1), List(Tuple(0, Decimal("1")), Tuple(1, Decimal("5056584744960000")), Tuple(2, Decimal("3.1036100626369830847879402668101769402280611882492e+6626")), Tuple(3, Decimal("2.0045690761252153894020068969764708165025223902021e+1172113")), Tuple(4, Decimal("7.8913000980387915476627721291099032636382430763247e+167396248")), Tuple(5, Decimal("6.0203407218068785584794013164002058716523147916958e+21742374725")), Tuple(6, Decimal("1.0145655480290378725684376810089100792606395451713e+2674273971959")), Tuple(7, Decimal("5.2418488985408575463326646933057662934049190054866e+317427852191102")), Tuple(8, Decimal("5.7976150706924830557487583722980527113426519510559e+36742790669064055")), Tuple(9, Decimal("4.1978917865925966071745800658793636650835499429177e+4174279130405945548")), Tuple(10, Decimal("4.8323663133177075948431502316007152775466606093624e+467427913765589957090")))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC