Assumptions:
TeX:
\mathop{\operatorname{solutions}\,}\limits_{x \in \mathbb{C}} \left[T_{n}\!\left(x\right) = -1\right] = \left\{ \cos\!\left(\frac{2 k - 1}{n} \pi\right) : k \in \{1, 2, \ldots \left\lfloor \frac{n + 1}{2} \right\rfloor\} \right\} n \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Chebyshev polynomial of the first kind | |
CC | Complex numbers | |
SetBuilder | Set comprehension | |
ConstPi | The constant pi (3.14...) | |
ZZBetween | Integers between a and b inclusive | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("db2b0a"), Formula(Equal(Solutions(Brackets(Equal(ChebyshevT(n, x), -1)), x, Element(x, CC)), SetBuilder(Cos(Mul(Div(Sub(Mul(2, k), 1), n), ConstPi)), k, Element(k, ZZBetween(1, Floor(Div(Add(n, 1), 2))))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(1))))