Assumptions:
TeX:
\mathop{\operatorname{solutions}\,}\limits_{x \in \mathbb{C}} \left[T_{n}\!\left(x\right) = -1\right] = \left\{ \cos\!\left(\frac{2 k - 1}{n} \pi\right) : k \in \{1, 2, \ldots, \left\lfloor \frac{n + 1}{2} \right\rfloor\} \right\}
n \in \mathbb{Z}_{\ge 1}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Solutions | Solution set | |
| ChebyshevT | Chebyshev polynomial of the first kind | |
| CC | Complex numbers | |
| Cos | Cosine | |
| Pi | The constant pi (3.14...) | |
| Range | Integers between given endpoints | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("db2b0a"),
Formula(Equal(Solutions(Brackets(Equal(ChebyshevT(n, x), -1)), ForElement(x, CC)), Set(Cos(Mul(Div(Sub(Mul(2, k), 1), n), Pi)), ForElement(k, Range(1, Floor(Div(Add(n, 1), 2))))))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(1))))