Assumptions:
TeX:
R_G\!\left(x, y, z\right) = \frac{1}{4} \int_{0}^{\infty} \frac{t}{\sqrt{t + x} \sqrt{t + y} \sqrt{t + z}} \left(\frac{x}{t + x} + \frac{y}{t + y} + \frac{z}{t + z}\right) \, dt
x \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRG | Carlson symmetric elliptic integral of the second kind | |
| Integral | Integral | |
| Sqrt | Principal square root | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| OpenInterval | Open interval |
Source code for this entry:
Entry(ID("dab889"),
Formula(Equal(CarlsonRG(x, y, z), Mul(Div(1, 4), Integral(Mul(Div(t, Mul(Mul(Sqrt(Add(t, x)), Sqrt(Add(t, y))), Sqrt(Add(t, z)))), Add(Add(Div(x, Add(t, x)), Div(y, Add(t, y))), Div(z, Add(t, z)))), For(t, 0, Infinity))))),
Variables(x, y, z),
Assumptions(And(Element(x, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(y, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenInterval(Neg(Infinity), 0))))))