Fungrim home page

Fungrim entry: da47f6

TN ⁣([b1,b2,,bn],[z1,z2,,zn])=(m1,m2,,mn)(Z0)nk=1nmk=Nk=1n(bk)mk(mk)!zkmkT_{N}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = \sum_{\textstyle{\left(m_{1}, m_{2}, \ldots, m_{n}\right) \in {\left(\mathbb{Z}_{\ge 0}\right)}^{n} \atop \sum_{k=1}^{n} m_{k} = N}} \prod_{k=1}^{n} \frac{\left(b_{k}\right)_{m_{k}}}{\left(m_{k}\right)!} z_{k}^{m_{k}}
Assumptions:nZ1  and  NZ0  and  (bkC   for all k{1,2,,n})  and  (zkC   for all k{1,2,,n})n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; \left(b_{k} \in \mathbb{C} \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \left(z_{k} \in \mathbb{C} \;\text{ for all } k \in \{1, 2, \ldots, n\}\right)
TeX:
T_{N}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = \sum_{\textstyle{\left(m_{1}, m_{2}, \ldots, m_{n}\right) \in {\left(\mathbb{Z}_{\ge 0}\right)}^{n} \atop \sum_{k=1}^{n} m_{k} = N}} \prod_{k=1}^{n} \frac{\left(b_{k}\right)_{m_{k}}}{\left(m_{k}\right)!} z_{k}^{m_{k}}

n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; \left(b_{k} \in \mathbb{C} \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \left(z_{k} \in \mathbb{C} \;\text{ for all } k \in \{1, 2, \ldots, n\}\right)
Definitions:
Fungrim symbol Notation Short description
CarlsonHypergeometricTTN ⁣(b,z)T_{N}\!\left(b, z\right) Term in expansion of Carlson multivariate hypergeometric function
Sumnf(n)\sum_{n} f(n) Sum
Productnf(n)\prod_{n} f(n) Product
RisingFactorial(z)k\left(z\right)_{k} Rising factorial
Factorialn!n ! Factorial
Powab{a}^{b} Power
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
CCC\mathbb{C} Complex numbers
Range{a,a+1,,b}\{a, a + 1, \ldots, b\} Integers between given endpoints
Source code for this entry:
Entry(ID("da47f6"),
    Formula(Equal(CarlsonHypergeometricT(N, List(b_(k), For(k, 1, n)), List(z_(k), For(k, 1, n))), Sum(Product(Mul(Div(RisingFactorial(b_(k), m_(k)), Factorial(m_(k))), Pow(z_(k), m_(k))), For(k, 1, n)), ForElement(Tuple(m_(k), For(k, 1, n)), CartesianPower(Parentheses(ZZGreaterEqual(0)), n)), Equal(Sum(m_(k), For(k, 1, n)), N)))),
    Variables(n, N, b_, z_),
    Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(N, ZZGreaterEqual(0)), All(Element(b_(k), CC), ForElement(k, Range(1, n))), All(Element(z_(k), CC), ForElement(k, Range(1, n))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC