Assumptions:
TeX:
\zeta\!\left(s\right) = \sum_{k=1}^{\infty} \frac{1}{{k}^{s}}
s \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(s\right) \gt 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| RiemannZeta | Riemann zeta function | |
| Pow | Power | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("da2fdb"),
Formula(Equal(RiemannZeta(s), Sum(Div(1, Pow(k, s)), Tuple(k, 1, Infinity)))),
Variables(s),
Assumptions(And(Element(s, CC), Greater(Re(s), 1))))