Assumptions:
TeX:
\zeta\!\left(s\right) = \sum_{k=1}^{\infty} \frac{1}{{k}^{s}} s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
RiemannZeta | Riemann zeta function | |
Sum | Sum | |
Pow | Power | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("da2fdb"), Formula(Equal(RiemannZeta(s), Sum(Div(1, Pow(k, s)), For(k, 1, Infinity)))), Variables(s), Assumptions(And(Element(s, CC), Greater(Re(s), 1))))