References:
- J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987.
TeX:
\sum_{n=0}^{\infty} \frac{1}{F_{2 n + 1}} = \frac{\sqrt{5}}{4} \theta_{2}^{2}\!\left(0, \tau\right)\; \text{ where } \tau = \frac{1}{\pi i} \log\!\left(\frac{3 - \sqrt{5}}{2}\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Fibonacci | Fibonacci number | |
Infinity | Positive infinity | |
Sqrt | Principal square root | |
Pow | Power | |
JacobiTheta | Jacobi theta function | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
Log | Natural logarithm |
Source code for this entry:
Entry(ID("da1873"), Formula(Equal(Sum(Div(1, Fibonacci(Add(Mul(2, n), 1))), For(n, 0, Infinity)), Where(Mul(Div(Sqrt(5), 4), Pow(JacobiTheta(2, 0, tau), 2)), Equal(tau, Mul(Div(1, Mul(Pi, ConstI)), Log(Div(Sub(3, Sqrt(5)), 2))))))), References("J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987."))