Assumptions:
TeX:
R_F\!\left(0, y, z\right) = \int_{0}^{\pi / 2} \frac{1}{\sqrt{y \cos^{2}\!\left(\theta\right) + z \sin^{2}\!\left(\theta\right)}} \, d\theta y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(y) > 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
CarlsonRF | Carlson symmetric elliptic integral of the first kind | |
Integral | Integral | |
Sqrt | Principal square root | |
Pow | Power | |
Cos | Cosine | |
Sin | Sine | |
Pi | The constant pi (3.14...) | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("da16db"), Formula(Equal(CarlsonRF(0, y, z), Integral(Div(1, Sqrt(Add(Mul(y, Pow(Cos(theta), 2)), Mul(z, Pow(Sin(theta), 2))))), For(theta, 0, Div(Pi, 2))))), Variables(y, z), Assumptions(And(Element(y, CC), Element(z, CC), Greater(Re(y), 0), Greater(Re(z), 0))))