Assumptions:
TeX:
\psi\!\left(z\right) = \log(z) - \frac{1}{2 z} - 2 \int_{0}^{\infty} \frac{t}{\left({t}^{2} + {z}^{2}\right) \left({e}^{2 \pi t} - 1\right)} \, dt z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DigammaFunction | Digamma function | |
Log | Natural logarithm | |
Integral | Integral | |
Pow | Power | |
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("d9c818"), Formula(Equal(DigammaFunction(z), Sub(Sub(Log(z), Div(1, Mul(2, z))), Mul(2, Integral(Div(t, Mul(Add(Pow(t, 2), Pow(z, 2)), Sub(Exp(Mul(Mul(2, Pi), t)), 1))), For(t, 0, Infinity)))))), Variables(z), Assumptions(And(Element(z, CC), Greater(Re(z), 0))))