Assumptions:
TeX:
\psi\!\left(z\right) = \log(z) - \frac{1}{2 z} - 2 \int_{0}^{\infty} \frac{t}{\left({t}^{2} + {z}^{2}\right) \left({e}^{2 \pi t} - 1\right)} \, dt
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DigammaFunction | Digamma function | |
| Log | Natural logarithm | |
| Integral | Integral | |
| Pow | Power | |
| Exp | Exponential function | |
| Pi | The constant pi (3.14...) | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("d9c818"),
Formula(Equal(DigammaFunction(z), Sub(Sub(Log(z), Div(1, Mul(2, z))), Mul(2, Integral(Div(t, Mul(Add(Pow(t, 2), Pow(z, 2)), Sub(Exp(Mul(Mul(2, Pi), t)), 1))), For(t, 0, Infinity)))))),
Variables(z),
Assumptions(And(Element(z, CC), Greater(Re(z), 0))))