This is simply a syntactical definition of character evaluation.
Assumptions:
TeX:
\chi(n) = \chi_{q \, . \, \ell}\!\left(n\right)\; \text{ where } \chi = \chi_{q \, . \, \ell}
q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \ell \in \{1, 2, \ldots, \max\!\left(q, 2\right) - 1\} \;\mathbin{\operatorname{and}}\; \gcd\!\left(\ell, q\right) = 1 \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DirichletCharacter | Dirichlet character | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| Range | Integers between given endpoints | |
| GCD | Greatest common divisor | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("d9a187"),
Formula(Where(Equal(chi(n), DirichletCharacter(q, ell, n)), Equal(chi, DirichletCharacter(q, ell)))),
Description("This is simply a syntactical definition of character evaluation."),
Variables(q, ell, n),
Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(ell, Range(1, Sub(Max(q, 2), 1))), Equal(GCD(ell, q), 1), Element(n, ZZ))))