Assumptions:
TeX:
\operatorname{acosh}\!\left(\frac{x}{y}\right) = \sqrt{{x}^{2} - {y}^{2}} R_C\!\left({x}^{2}, {y}^{2}\right)
y \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; x \in \left[y, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sqrt | Principal square root | |
| Pow | Power | |
| CarlsonRC | Degenerate Carlson symmetric elliptic integral of the first kind | |
| OpenInterval | Open interval | |
| Infinity | Positive infinity | |
| ClosedOpenInterval | Closed-open interval |
Source code for this entry:
Entry(ID("d9765b"),
Formula(Equal(Acosh(Div(x, y)), Mul(Sqrt(Sub(Pow(x, 2), Pow(y, 2))), CarlsonRC(Pow(x, 2), Pow(y, 2))))),
Variables(x, y),
Assumptions(And(Element(y, OpenInterval(0, Infinity)), Element(x, ClosedOpenInterval(y, Infinity)))))