Assumptions:
TeX:
\operatorname{acosh}\!\left(\frac{x}{y}\right) = \sqrt{{x}^{2} - {y}^{2}} R_C\!\left({x}^{2}, {y}^{2}\right) y \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; x \in \left[y, \infty\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sqrt | Principal square root | |
Pow | Power | |
CarlsonRC | Degenerate Carlson symmetric elliptic integral of the first kind | |
OpenInterval | Open interval | |
Infinity | Positive infinity | |
ClosedOpenInterval | Closed-open interval |
Source code for this entry:
Entry(ID("d9765b"), Formula(Equal(Acosh(Div(x, y)), Mul(Sqrt(Sub(Pow(x, 2), Pow(y, 2))), CarlsonRC(Pow(x, 2), Pow(y, 2))))), Variables(x, y), Assumptions(And(Element(y, OpenInterval(0, Infinity)), Element(x, ClosedOpenInterval(y, Infinity)))))