Assumptions:
TeX:
\frac{d^{2}}{{d z}^{2}} \log\!\left(\theta_{1}\!\left(z , \tau\right)\right) = {\pi}^{2} \sum_{n=-\infty}^{\infty} \frac{1}{\sin^{2}\!\left(\pi \left(z + n \tau\right)\right)}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; \theta_{1}\!\left(z , \tau\right) \ne 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ComplexBranchDerivative | Complex derivative, allowing branch cuts | |
| Log | Natural logarithm | |
| JacobiTheta | Jacobi theta function | |
| Pow | Power | |
| Pi | The constant pi (3.14...) | |
| Sum | Sum | |
| Sin | Sine | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("d81f05"),
Formula(Equal(ComplexBranchDerivative(Log(JacobiTheta(1, z, tau)), For(z, z, 2)), Mul(Pow(Pi, 2), Sum(Div(1, Pow(Sin(Mul(Pi, Add(z, Mul(n, tau)))), 2)), For(n, Neg(Infinity), Infinity))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH), NotEqual(JacobiTheta(1, z, tau), 0))))