Assumptions:
TeX:
\mathop{\operatorname{solutions}\,}\limits_{w \in \mathbb{C}} \left[w {e}^{w} = z\right] = \left\{ W_{k}\!\left(z\right) : k \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, \left(z \ne 0 \,\mathbin{\operatorname{or}}\, k = 0\right) \right\}
z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Exp | Exponential function | |
| CC | Complex numbers | |
| SetBuilder | Set comprehension | |
| LambertW | Lambert W-function | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("d7136f"),
Formula(Equal(Solutions(Brackets(Equal(Mul(w, Exp(w)), z)), w, Element(w, CC)), SetBuilder(LambertW(k, z), k, And(Element(k, ZZ), Or(Unequal(z, 0), Equal(k, 0)))))),
Variables(z),
Assumptions(Element(z, CC)))