Assumptions:
TeX:
\theta_{2}\!\left(z , \tau\right) = 2 {e}^{\pi i \tau / 4} \cos\!\left(\pi z\right) \prod_{n=1}^{\infty} \left(1 - {q}^{2 n}\right) \left(1 + 2 {q}^{2 n} \cos\!\left(2 \pi z\right) + {q}^{4 n}\right)\; \text{ where } q = {e}^{\pi i \tau} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
Cos | Cosine | |
Product | Product | |
Pow | Power | |
Infinity | Positive infinity | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("d6a799"), Formula(Equal(JacobiTheta(2, z, tau), Where(Mul(Mul(Mul(2, Exp(Div(Mul(Mul(Pi, ConstI), tau), 4))), Cos(Mul(Pi, z))), Product(Mul(Sub(1, Pow(q, Mul(2, n))), Add(Add(1, Mul(Mul(2, Pow(q, Mul(2, n))), Cos(Mul(Mul(2, Pi), z)))), Pow(q, Mul(4, n)))), For(n, 1, Infinity))), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))