Assumptions:
TeX:
\sum_{a=1}^{q} \chi(a) \frac{z {e}^{a z}}{{e}^{q z} - 1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{{z}^{n}}{n !} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0 \;\mathbin{\operatorname{and}}\; \left|z\right| < \frac{2 \pi}{q}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Exp | Exponential function | |
GeneralizedBernoulliB | Generalized Bernoulli number | |
Pow | Power | |
Factorial | Factorial | |
Infinity | Positive infinity | |
ZZGreaterEqual | Integers greater than or equal to n | |
DirichletGroup | Dirichlet characters with given modulus | |
CC | Complex numbers | |
Abs | Absolute value | |
Pi | The constant pi (3.14...) |
Source code for this entry:
Entry(ID("d69b41"), Formula(Equal(Sum(Mul(chi(a), Div(Mul(z, Exp(Mul(a, z))), Sub(Exp(Mul(q, z)), 1))), For(a, 1, q)), Sum(Mul(GeneralizedBernoulliB(n, chi), Div(Pow(z, n), Factorial(n))), For(n, 0, Infinity)))), Variables(q, chi, z), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(z, CC), NotEqual(z, 0), Less(Abs(z), Div(Mul(2, Pi), q)))))