Assumptions:
TeX:
\left(z\right)_{2 k} = {4}^{k} \left(\frac{z}{2}\right)_{k} \left(\frac{z + 1}{2}\right)_{k}
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, k \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| RisingFactorial | Rising factorial | |
| Pow | Power | |
| CC | Complex numbers | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("d651d1"),
Formula(Equal(RisingFactorial(z, Mul(2, k)), Mul(Mul(Pow(4, k), RisingFactorial(Div(z, 2), k)), RisingFactorial(Div(Add(z, 1), 2), k)))),
Variables(z, k),
Assumptions(And(Element(z, CC), Element(k, ZZGreaterEqual(0)))))