Assumptions:
TeX:
\theta_{j}\!\left(z , \tau + x\right) = \sum_{n=0}^{\infty} \frac{1}{{\left(4 \pi i\right)}^{n}} \frac{\theta^{(2 n)}_{j}\!\left(z , \tau\right)}{n !} {x}^{n} j \in \left\{1, 2, 3, 4\right\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|x\right| < \operatorname{Im}(\tau)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
Sum | Sum | |
Pow | Power | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
Factorial | Factorial | |
Infinity | Positive infinity | |
CC | Complex numbers | |
HH | Upper complex half-plane | |
Abs | Absolute value | |
Im | Imaginary part |
Source code for this entry:
Entry(ID("d637c5"), Formula(Equal(JacobiTheta(j, z, Add(tau, x)), Sum(Mul(Mul(Div(1, Pow(Mul(Mul(4, Pi), ConstI), n)), Div(JacobiTheta(j, z, tau, Mul(2, n)), Factorial(n))), Pow(x, n)), For(n, 0, Infinity)))), Variables(j, z, tau, x), Assumptions(And(Element(j, Set(1, 2, 3, 4)), Element(z, CC), Element(tau, HH), Element(x, CC), Less(Abs(x), Im(tau)))))