Assumptions:
TeX:
j\!\left(\frac{a \tau + b}{c \tau + d}\right) = j\!\left(\tau\right)
\tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ModularJ | Modular j-invariant | |
| HH | Upper complex half-plane | |
| Matrix2x2 | Two by two matrix | |
| SL2Z | Modular group |
Source code for this entry:
Entry(ID("d5f569"),
Formula(Equal(ModularJ(Div(Add(Mul(a, tau), b), Add(Mul(c, tau), d))), ModularJ(tau))),
Variables(a, b, c, d, tau),
Assumptions(And(Element(tau, HH), Element(Matrix2x2(a, b, c, d), SL2Z))))