Assumptions:
TeX:
Y_{n}\!\left(z\right) = -\frac{2}{\pi} \left({i}^{n} K_{n}\!\left(i z\right) + \left(\log\!\left(i z\right) - \log(z)\right) J_{n}\!\left(z\right)\right)
n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BesselY | Bessel function of the second kind | |
| Pi | The constant pi (3.14...) | |
| Pow | Power | |
| ConstI | Imaginary unit | |
| BesselK | Modified Bessel function of the second kind | |
| Log | Natural logarithm | |
| BesselJ | Bessel function of the first kind | |
| ZZ | Integers | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("d5b7e8"),
Formula(Equal(BesselY(n, z), Mul(Neg(Div(2, Pi)), Add(Mul(Pow(ConstI, n), BesselK(n, Mul(ConstI, z))), Mul(Sub(Log(Mul(ConstI, z)), Log(z)), BesselJ(n, z)))))),
Variables(n, z),
Assumptions(And(Element(n, ZZ), Element(z, SetMinus(CC, Set(0))))))