Assumptions:
Alternative assumptions:
TeX:
J_{\nu}\!\left(z\right) = \frac{z}{2 \nu} \left(J_{\nu - 1}\!\left(z\right) + J_{\nu + 1}\!\left(z\right)\right) \nu \in \mathbb{Z} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \nu \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselJ | Bessel function of the first kind | |
ZZ | Integers | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("d56914"), Formula(Equal(BesselJ(nu, z), Mul(Div(z, Mul(2, nu)), Add(BesselJ(Sub(nu, 1), z), BesselJ(Add(nu, 1), z))))), Variables(nu, z), Assumptions(And(Element(nu, SetMinus(ZZ, Set(0))), Element(z, CC)), And(Element(nu, SetMinus(CC, Set(0))), Element(z, SetMinus(CC, Set(0))))))