Assumptions:
TeX:
R_J\!\left(x, y, y, w\right) = \begin{cases} \frac{3}{w - y} \left(R_C\!\left(x, y\right) - R_C\!\left(x, w\right)\right), & y \ne w\\\frac{3}{2 \left(y - x\right)} \left(R_C\!\left(x, y\right) - \frac{\sqrt{x}}{y}\right), & y = w \;\mathbin{\operatorname{and}}\; x \ne y\\{x}^{-3 / 2}, & x = y = w\\ \end{cases} x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; w \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
CarlsonRJ | Carlson symmetric elliptic integral of the third kind | |
CarlsonRC | Degenerate Carlson symmetric elliptic integral of the first kind | |
Sqrt | Principal square root | |
Pow | Power | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("d4b12e"), Formula(Equal(CarlsonRJ(x, y, y, w), Cases(Tuple(Mul(Div(3, Sub(w, y)), Sub(CarlsonRC(x, y), CarlsonRC(x, w))), NotEqual(y, w)), Tuple(Mul(Div(3, Mul(2, Sub(y, x))), Sub(CarlsonRC(x, y), Div(Sqrt(x), y))), And(Equal(y, w), NotEqual(x, y))), Tuple(Pow(x, Neg(Div(3, 2))), Equal(x, y, w))))), Variables(x, y, w), Assumptions(And(Element(x, CC), Element(y, CC), Element(w, CC))))