Fungrim home page

Fungrim entry: d4852c

gcd ⁣(na,nb)=ngcd ⁣(a,b)\gcd\!\left(n a, n b\right) = \left|n\right| \gcd\!\left(a, b\right)
Assumptions:aZandbZandnZa \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, b \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}
TeX:
\gcd\!\left(n a, n b\right) = \left|n\right| \gcd\!\left(a, b\right)

a \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, b \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}
Definitions:
Fungrim symbol Notation Short description
GCDgcd ⁣(n,k)\gcd\!\left(n, k\right) Greatest common divisor
Absz\left|z\right| Absolute value
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("d4852c"),
    Formula(Equal(GCD(Mul(n, a), Mul(n, b)), Mul(Abs(n), GCD(a, b)))),
    Variables(a, b, n),
    Assumptions(And(Element(a, ZZ), Element(b, ZZ), Element(n, ZZ))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC