Assumptions:
TeX:
R_J\!\left(x, y, z, w\right) \ge {\left(\frac{5}{\sqrt{x} + \sqrt{y} + \sqrt{z} + 2 \sqrt{w}}\right)}^{3}
x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; w \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; \left(\left(x \ne 0 \;\mathbin{\operatorname{and}}\; y \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(x \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(y \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right)\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRJ | Carlson symmetric elliptic integral of the third kind | |
| Pow | Power | |
| Sqrt | Principal square root | |
| ClosedOpenInterval | Closed-open interval | |
| Infinity | Positive infinity | |
| OpenInterval | Open interval |
Source code for this entry:
Entry(ID("d3b39c"),
Formula(GreaterEqual(CarlsonRJ(x, y, z, w), Pow(Div(5, Add(Add(Add(Sqrt(x), Sqrt(y)), Sqrt(z)), Mul(2, Sqrt(w)))), 3))),
Variables(x, y, z, w),
Assumptions(And(Element(x, ClosedOpenInterval(0, Infinity)), Element(y, ClosedOpenInterval(0, Infinity)), Element(z, ClosedOpenInterval(0, Infinity)), Element(w, OpenInterval(0, Infinity)), Or(And(NotEqual(x, 0), NotEqual(y, 0)), And(NotEqual(x, 0), NotEqual(z, 0)), And(NotEqual(y, 0), NotEqual(z, 0))))))