Fungrim home page

Fungrim entry: d3b39c

RJ ⁣(x,y,z,w)(5x+y+z+2w)3R_J\!\left(x, y, z, w\right) \ge {\left(\frac{5}{\sqrt{x} + \sqrt{y} + \sqrt{z} + 2 \sqrt{w}}\right)}^{3}
Assumptions:x[0,)  and  y[0,)  and  z[0,)  and  w(0,)  and  ((x0  and  y0)  or  (x0  and  z0)  or  (y0  and  z0))x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; w \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; \left(\left(x \ne 0 \;\mathbin{\operatorname{and}}\; y \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(x \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(y \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right)\right)
TeX:
R_J\!\left(x, y, z, w\right) \ge {\left(\frac{5}{\sqrt{x} + \sqrt{y} + \sqrt{z} + 2 \sqrt{w}}\right)}^{3}

x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; w \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; \left(\left(x \ne 0 \;\mathbin{\operatorname{and}}\; y \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(x \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(y \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right)\right)
Definitions:
Fungrim symbol Notation Short description
CarlsonRJRJ ⁣(x,y,z,w)R_J\!\left(x, y, z, w\right) Carlson symmetric elliptic integral of the third kind
Powab{a}^{b} Power
Sqrtz\sqrt{z} Principal square root
ClosedOpenInterval[a,b)\left[a, b\right) Closed-open interval
Infinity\infty Positive infinity
OpenInterval(a,b)\left(a, b\right) Open interval
Source code for this entry:
Entry(ID("d3b39c"),
    Formula(GreaterEqual(CarlsonRJ(x, y, z, w), Pow(Div(5, Add(Add(Add(Sqrt(x), Sqrt(y)), Sqrt(z)), Mul(2, Sqrt(w)))), 3))),
    Variables(x, y, z, w),
    Assumptions(And(Element(x, ClosedOpenInterval(0, Infinity)), Element(y, ClosedOpenInterval(0, Infinity)), Element(z, ClosedOpenInterval(0, Infinity)), Element(w, OpenInterval(0, Infinity)), Or(And(NotEqual(x, 0), NotEqual(y, 0)), And(NotEqual(x, 0), NotEqual(z, 0)), And(NotEqual(y, 0), NotEqual(z, 0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC