Assumptions:
TeX:
\lim_{\varepsilon \to {0}^{+}} \left[\log G\!\left(x - \varepsilon i\right)\right] = \overline{\log G(x)} = \log G(x) - n \left(n - 1\right) \pi i\; \text{ where } n = \left\lfloor x \right\rfloor
x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x < 0 \;\mathbin{\operatorname{and}}\; x \notin \mathbb{Z}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| RightLimit | Limiting value, from the right | |
| LogBarnesG | Logarithmic Barnes G-function | |
| ConstI | Imaginary unit | |
| Conjugate | Complex conjugate | |
| Pi | The constant pi (3.14...) | |
| RR | Real numbers | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("d35c54"),
Formula(Equal(RightLimit(Brackets(LogBarnesG(Sub(x, Mul(epsilon, ConstI)))), For(epsilon, 0)), Conjugate(LogBarnesG(x)), Where(Sub(LogBarnesG(x), Mul(Mul(Mul(n, Sub(n, 1)), Pi), ConstI)), Equal(n, Floor(x))))),
Variables(x),
Assumptions(And(Element(x, RR), Less(x, 0), NotElement(x, ZZ))))