Assumptions:
TeX:
\lim_{\varepsilon \to {0}^{+}} \left[\log G\!\left(x - \varepsilon i\right)\right] = \overline{\log G(x)} = \log G(x) - n \left(n - 1\right) \pi i\; \text{ where } n = \left\lfloor x \right\rfloor x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x < 0 \;\mathbin{\operatorname{and}}\; x \notin \mathbb{Z}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
RightLimit | Limiting value, from the right | |
LogBarnesG | Logarithmic Barnes G-function | |
ConstI | Imaginary unit | |
Conjugate | Complex conjugate | |
Pi | The constant pi (3.14...) | |
RR | Real numbers | |
ZZ | Integers |
Source code for this entry:
Entry(ID("d35c54"), Formula(Equal(RightLimit(Brackets(LogBarnesG(Sub(x, Mul(epsilon, ConstI)))), For(epsilon, 0)), Conjugate(LogBarnesG(x)), Where(Sub(LogBarnesG(x), Mul(Mul(Mul(n, Sub(n, 1)), Pi), ConstI)), Equal(n, Floor(x))))), Variables(x), Assumptions(And(Element(x, RR), Less(x, 0), NotElement(x, ZZ))))