Assumptions:
References:
- F. Johansson (2015), Rigorous high-precision computation of the Hurwitz zeta function and its derivatives, Numerical Algorithms 69:253, DOI: 10.1007/s11075-014-9893-1
- F. W. J. Olver, Asymptotics and Special Functions, AK Peters, 1997. Chapter 8.
TeX:
\left|\zeta\!\left(s\right) - \left(\sum_{k=1}^{N - 1} \frac{1}{{k}^{s}} + \frac{{N}^{1 - s}}{s - 1} + \frac{1}{{N}^{s}} \left(\frac{1}{2} + \sum_{k=1}^{M} \frac{B_{2 k}}{\left(2 k\right)!} \frac{\left(s\right)_{2 k - 1}}{{N}^{2 k - 1}}\right)\right)\right| \le \frac{4 \left|\left(s\right)_{2 M}\right|}{{\left(2 \pi\right)}^{2 M}} \frac{{N}^{-\left(\operatorname{Re}(s) + 2 M - 1\right)}}{\operatorname{Re}(s) + 2 M - 1} s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; s \ne 1 \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; M \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; \operatorname{Re}\!\left(s + 2 M - 1\right) > 0 \;\mathbin{\operatorname{and}}\; N \ge 1 \;\mathbin{\operatorname{and}}\; M \ge 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
RiemannZeta | Riemann zeta function | |
Sum | Sum | |
Pow | Power | |
BernoulliB | Bernoulli number | |
Factorial | Factorial | |
RisingFactorial | Rising factorial | |
Pi | The constant pi (3.14...) | |
Re | Real part | |
CC | Complex numbers | |
ZZ | Integers |
Source code for this entry:
Entry(ID("d31b04"), Formula(LessEqual(Abs(Sub(RiemannZeta(s), Parentheses(Add(Add(Sum(Div(1, Pow(k, s)), For(k, 1, Sub(N, 1))), Div(Pow(N, Sub(1, s)), Sub(s, 1))), Mul(Div(1, Pow(N, s)), Add(Div(1, 2), Sum(Mul(Div(BernoulliB(Mul(2, k)), Factorial(Mul(2, k))), Div(RisingFactorial(s, Sub(Mul(2, k), 1)), Pow(N, Sub(Mul(2, k), 1)))), For(k, 1, M)))))))), Mul(Div(Mul(4, Abs(RisingFactorial(s, Mul(2, M)))), Pow(Mul(2, Pi), Mul(2, M))), Div(Pow(N, Neg(Parentheses(Sub(Add(Re(s), Mul(2, M)), 1)))), Sub(Add(Re(s), Mul(2, M)), 1))))), Assumptions(And(Element(s, CC), NotEqual(s, 1), Element(N, ZZ), Element(M, ZZ), Greater(Re(Sub(Add(s, Mul(2, M)), 1)), 0), GreaterEqual(N, 1), GreaterEqual(M, 1))), Variables(s, N, M), References("F. Johansson (2015), Rigorous high-precision computation of the Hurwitz zeta function and its derivatives, Numerical Algorithms 69:253, DOI: 10.1007/s11075-014-9893-1", "F. W. J. Olver, Asymptotics and Special Functions, AK Peters, 1997. Chapter 8."))