Assumptions:
TeX:
\theta_{1}\!\left(z , \tau\right) = \frac{\theta'_{1}\!\left(0 , \tau\right)}{\pi} \sin\!\left(\pi z\right) \prod_{n=1}^{\infty} \frac{\sin\!\left(\pi \left(n \tau + z\right)\right) \sin\!\left(\pi \left(n \tau - z\right)\right)}{\sin^{2}\!\left(\pi n \tau\right)}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| Pi | The constant pi (3.14...) | |
| Sin | Sine | |
| Product | Product | |
| Pow | Power | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("d2f183"),
Formula(Equal(JacobiTheta(1, z, tau), Mul(Mul(Div(JacobiTheta(1, 0, tau, 1), Pi), Sin(Mul(Pi, z))), Product(Div(Mul(Sin(Mul(Pi, Add(Mul(n, tau), z))), Sin(Mul(Pi, Sub(Mul(n, tau), z)))), Pow(Sin(Mul(Mul(Pi, n), tau)), 2)), For(n, 1, Infinity))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))