Fungrim home page

Fungrim entry: d1a0ec

logG ⁣(1x)=logG ⁣(1+x)+xlog ⁣(sin ⁣(πx)π)+12πIm ⁣(Li2 ⁣(e2πix))+sgn(x)n(n+1)πi2   where n=x\log G\!\left(1 - x\right) = \log G\!\left(1 + x\right) + x \log\!\left(\frac{\left|\sin\!\left(\pi x\right)\right|}{\pi}\right) + \frac{1}{2 \pi} \operatorname{Im}\!\left(\operatorname{Li}_{2}\!\left({e}^{2 \pi i x}\right)\right) + \operatorname{sgn}(x) n \left(n + 1\right) \frac{\pi i}{2}\; \text{ where } n = \left\lfloor x \right\rfloor
Assumptions:xR  and  xZx \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x \notin \mathbb{Z}
TeX:
\log G\!\left(1 - x\right) = \log G\!\left(1 + x\right) + x \log\!\left(\frac{\left|\sin\!\left(\pi x\right)\right|}{\pi}\right) + \frac{1}{2 \pi} \operatorname{Im}\!\left(\operatorname{Li}_{2}\!\left({e}^{2 \pi i x}\right)\right) + \operatorname{sgn}(x) n \left(n + 1\right) \frac{\pi i}{2}\; \text{ where } n = \left\lfloor x \right\rfloor

x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x \notin \mathbb{Z}
Definitions:
Fungrim symbol Notation Short description
LogBarnesGlogG(z)\log G(z) Logarithmic Barnes G-function
Loglog(z)\log(z) Natural logarithm
Absz\left|z\right| Absolute value
Sinsin(z)\sin(z) Sine
Piπ\pi The constant pi (3.14...)
ImIm(z)\operatorname{Im}(z) Imaginary part
Expez{e}^{z} Exponential function
ConstIii Imaginary unit
Signsgn(z)\operatorname{sgn}(z) Sign function
RRR\mathbb{R} Real numbers
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("d1a0ec"),
    Formula(Equal(LogBarnesG(Sub(1, x)), Add(Add(Add(LogBarnesG(Add(1, x)), Mul(x, Log(Div(Abs(Sin(Mul(Pi, x))), Pi)))), Mul(Div(1, Mul(2, Pi)), Im(PolyLog(2, Exp(Mul(Mul(Mul(2, Pi), ConstI), x)))))), Where(Mul(Mul(Sign(x), Mul(n, Add(n, 1))), Div(Mul(Pi, ConstI), 2)), Equal(n, Floor(x)))))),
    Variables(x),
    Assumptions(And(Element(x, RR), NotElement(x, ZZ))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC