Assumptions:
TeX:
\log G\!\left(1 - x\right) = \log G\!\left(1 + x\right) + x \log\!\left(\frac{\left|\sin\!\left(\pi x\right)\right|}{\pi}\right) + \frac{1}{2 \pi} \operatorname{Im}\!\left(\operatorname{Li}_{2}\!\left({e}^{2 \pi i x}\right)\right) + \operatorname{sgn}(x) n \left(n + 1\right) \frac{\pi i}{2}\; \text{ where } n = \left\lfloor x \right\rfloor x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x \notin \mathbb{Z}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LogBarnesG | Logarithmic Barnes G-function | |
Log | Natural logarithm | |
Abs | Absolute value | |
Sin | Sine | |
Pi | The constant pi (3.14...) | |
Im | Imaginary part | |
Exp | Exponential function | |
ConstI | Imaginary unit | |
Sign | Sign function | |
RR | Real numbers | |
ZZ | Integers |
Source code for this entry:
Entry(ID("d1a0ec"), Formula(Equal(LogBarnesG(Sub(1, x)), Add(Add(Add(LogBarnesG(Add(1, x)), Mul(x, Log(Div(Abs(Sin(Mul(Pi, x))), Pi)))), Mul(Div(1, Mul(2, Pi)), Im(PolyLog(2, Exp(Mul(Mul(Mul(2, Pi), ConstI), x)))))), Where(Mul(Mul(Sign(x), Mul(n, Add(n, 1))), Div(Mul(Pi, ConstI), 2)), Equal(n, Floor(x)))))), Variables(x), Assumptions(And(Element(x, RR), NotElement(x, ZZ))))