Fungrim home page

Fungrim entry: d1438d

BnBmBn+m(n+mn)BnBmB_{n} B_{m} \le B_{n + m} \le {n + m \choose n} B_{n} B_{m}
Assumptions:nZ0  and  mZ0n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}_{\ge 0}
B_{n} B_{m} \le B_{n + m} \le {n + m \choose n} B_{n} B_{m}

n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}_{\ge 0}
Fungrim symbol Notation Short description
BellNumberBnB_{n} Bell number
Binomial(nk){n \choose k} Binomial coefficient
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(LessEqual(Mul(BellNumber(n), BellNumber(m)), BellNumber(Add(n, m)), Mul(Mul(Binomial(Add(n, m), n), BellNumber(n)), BellNumber(m)))),
    Variables(n, m),
    Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(m, ZZGreaterEqual(0)))),

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC