Assumptions:
TeX:
\sum_{n=0}^{\infty} F_{n} \frac{{z}^{n}}{n !} = \frac{2}{\sqrt{5}} {e}^{z / 2} \sinh\!\left(\frac{\sqrt{5}}{2} z\right)
z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sum | Sum | |
| Fibonacci | Fibonacci number | |
| Pow | Power | |
| Factorial | Factorial | |
| Infinity | Positive infinity | |
| Sqrt | Principal square root | |
| Exp | Exponential function | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("d0d91a"),
Formula(Equal(Sum(Mul(Fibonacci(n), Div(Pow(z, n), Factorial(n))), For(n, 0, Infinity)), Mul(Mul(Div(2, Sqrt(5)), Exp(Div(z, 2))), Sinh(Mul(Div(Sqrt(5), 2), z))))),
Variables(z),
Assumptions(Element(z, CC)))