Assumptions:
TeX:
\frac{d^{r}}{{d s}^{r}} \zeta\!\left(s, a\right) = \zeta^{(r)}\!\left(s, a\right)
s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; s \ne 1 \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0 \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ComplexDerivative | Complex derivative | |
| HurwitzZeta | Hurwitz zeta function | |
| CC | Complex numbers | |
| Re | Real part | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("d0d03b"),
Formula(Equal(ComplexDerivative(HurwitzZeta(s, a), For(s, s, r)), HurwitzZeta(s, a, r))),
Variables(s, a, r),
Assumptions(And(Element(s, CC), NotEqual(s, 1), Element(a, CC), Greater(Re(a), 0), Element(r, ZZGreaterEqual(0)))))