Assumptions:
TeX:
R_F\!\left(0, y, z\right) = \frac{\pi}{2} R_{-1 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}\right], \left[y, z\right]\right)
y \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right]Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRF | Carlson symmetric elliptic integral of the first kind | |
| Pi | The constant pi (3.14...) | |
| CarlsonHypergeometricR | Carlson multivariate hypergeometric function | |
| CC | Complex numbers | |
| OpenClosedInterval | Open-closed interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("d0c9ff"),
Formula(Equal(CarlsonRF(0, y, z), Mul(Div(Pi, 2), CarlsonHypergeometricR(Neg(Div(1, 2)), List(Div(1, 2), Div(1, 2)), List(y, z))))),
Variables(y, z),
Assumptions(And(Element(y, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))