Assumptions:
TeX:
\sum_{n=0}^{\infty} \frac{{\left(-1\right)}^{n}}{{\left(n + a\right)}^{r}} = \frac{{\left(-1\right)}^{r}}{{2}^{r} \left(r - 1\right)!} \left(\psi^{(r - 1)}\!\left(\frac{a}{2}\right) - \psi^{(r - 1)}\!\left(\frac{a + 1}{2}\right)\right) r \in \mathbb{Z}_{\ge 2} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \notin \{0, -1, \ldots\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Pow | Power | |
Infinity | Positive infinity | |
Factorial | Factorial | |
DigammaFunction | Digamma function | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("d02cf9"), Formula(Equal(Sum(Div(Pow(-1, n), Pow(Add(n, a), r)), For(n, 0, Infinity)), Mul(Div(Pow(-1, r), Mul(Pow(2, r), Factorial(Sub(r, 1)))), Sub(DigammaFunction(Div(a, 2), Sub(r, 1)), DigammaFunction(Div(Add(a, 1), 2), Sub(r, 1)))))), Variables(r, a), Assumptions(And(Element(r, ZZGreaterEqual(2)), Element(a, CC), NotElement(a, ZZLessEqual(0)))))