Assumptions:
References:
- Sequence A060691 in Sloane's On-Line Encyclopedia of Integer Sequences (OEIS)
TeX:
\operatorname{agm}\!\left(1, 1 + x\right) = \sum_{n=0}^{\infty} \frac{\text{A060691}\!\left(n\right)}{{8}^{n}} {\left(-x\right)}^{n}
x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|x\right| < 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| AGM | Arithmetic-geometric mean | |
| Sum | Sum | |
| SloaneA | Sequence X in Sloane's OEIS | |
| Pow | Power | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Abs | Absolute value |
Source code for this entry:
Entry(ID("cfefa9"),
Formula(Equal(AGM(1, Add(1, x)), Sum(Mul(Div(SloaneA("060691", n), Pow(8, n)), Pow(Neg(x), n)), For(n, 0, Infinity)))),
Variables(x),
Assumptions(And(Element(x, CC), Less(Abs(x), 1))))