References:
- https://doi.org/10.1007/BF01056314
TeX:
\left(\operatorname{RH}\right) \iff \left(\int_{0}^{\infty} \frac{1 - 12 {t}^{2}}{{\left(1 + 4 {t}^{2}\right)}^{3}} \int_{1 / 2}^{\infty} \log\!\left(\left|\zeta\!\left(\sigma + i t\right)\right|\right) \, d\sigma \, dt = \frac{\pi \left(3 - \gamma\right)}{32}\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| RiemannHypothesis | Riemann hypothesis | |
| Integral | Integral | |
| Pow | Power | |
| Log | Natural logarithm | |
| Abs | Absolute value | |
| RiemannZeta | Riemann zeta function | |
| ConstI | Imaginary unit | |
| Infinity | Positive infinity | |
| Pi | The constant pi (3.14...) | |
| ConstGamma | The constant gamma (0.577...) |
Source code for this entry:
Entry(ID("cf70ce"),
Formula(Equivalent(RiemannHypothesis, Equal(Integral(Mul(Div(Sub(1, Mul(12, Pow(t, 2))), Pow(Add(1, Mul(4, Pow(t, 2))), 3)), Integral(Log(Abs(RiemannZeta(Add(sigma, Mul(ConstI, t))))), For(sigma, Div(1, 2), Infinity))), For(t, 0, Infinity)), Div(Mul(Pi, Sub(3, ConstGamma)), 32)))),
References("https://doi.org/10.1007/BF01056314"))