Assumptions:
TeX:
j\!\left(\tau\right) = \frac{32 {\left({\left(\theta_2\!\left(0, \tau\right)\right)}^{8} + {\left(\theta_3\!\left(0, \tau\right)\right)}^{8} + {\left(\theta_4\!\left(0, \tau\right)\right)}^{8}\right)}^{3}}{{\left(\theta_2\!\left(0, \tau\right) \theta_3\!\left(0, \tau\right) \theta_4\!\left(0, \tau\right)\right)}^{8}} \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ModularJ | Modular j-invariant | |
Pow | Power | |
JacobiTheta2 | Jacobi theta function | |
JacobiTheta3 | Jacobi theta function | |
JacobiTheta4 | Jacobi theta function | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("cedcfc"), Formula(Equal(ModularJ(tau), Div(Mul(32, Pow(Add(Add(Pow(JacobiTheta2(0, tau), 8), Pow(JacobiTheta3(0, tau), 8)), Pow(JacobiTheta4(0, tau), 8)), 3)), Pow(Mul(Mul(JacobiTheta2(0, tau), JacobiTheta3(0, tau)), JacobiTheta4(0, tau)), 8)))), Variables(tau), Assumptions(Element(tau, HH)))