Assumptions:
TeX:
j(\tau) = \frac{32 {\left(\theta_{2}^{8}\!\left(0, \tau\right) + \theta_{3}^{8}\!\left(0, \tau\right) + \theta_{4}^{8}\!\left(0, \tau\right)\right)}^{3}}{{\left(\theta_{2}\!\left(0 , \tau\right) \theta_{3}\!\left(0 , \tau\right) \theta_{4}\!\left(0 , \tau\right)\right)}^{8}} \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ModularJ | Modular j-invariant | |
Pow | Power | |
JacobiTheta | Jacobi theta function | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("cedcfc"), Formula(Equal(ModularJ(tau), Div(Mul(32, Pow(Add(Add(Pow(JacobiTheta(2, 0, tau), 8), Pow(JacobiTheta(3, 0, tau), 8)), Pow(JacobiTheta(4, 0, tau), 8)), 3)), Pow(Mul(Mul(JacobiTheta(2, 0, tau), JacobiTheta(3, 0, tau)), JacobiTheta(4, 0, tau)), 8)))), Variables(tau), Assumptions(Element(tau, HH)))