Fungrim home page

Fungrim entry: ce9a39

Un ⁣(x)=(n+1)2F1 ⁣(n,n+2,32,1x2)U_{n}\!\left(x\right) = \left(n + 1\right) \,{}_2F_1\!\left(-n, n + 2, \frac{3}{2}, \frac{1 - x}{2}\right)
Assumptions:nZandxCn \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}
TeX:
U_{n}\!\left(x\right) = \left(n + 1\right) \,{}_2F_1\!\left(-n, n + 2, \frac{3}{2}, \frac{1 - x}{2}\right)

n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
ChebyshevUUn ⁣(x)U_{n}\!\left(x\right) Chebyshev polynomial of the second kind
Hypergeometric2F12F1 ⁣(a,b,c,z)\,{}_2F_1\!\left(a, b, c, z\right) Gauss hypergeometric function
ZZZ\mathbb{Z} Integers
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("ce9a39"),
    Formula(Equal(ChebyshevU(n, x), Mul(Add(n, 1), Hypergeometric2F1(Neg(n), Add(n, 2), Div(3, 2), Div(Sub(1, x), 2))))),
    Variables(n, x),
    Assumptions(And(Element(n, ZZ), Element(x, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC