Assumptions:
TeX:
U_{n}\!\left(x\right) = \left(n + 1\right) \,{}_2F_1\!\left(-n, n + 2, \frac{3}{2}, \frac{1 - x}{2}\right)
n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ChebyshevU | Chebyshev polynomial of the second kind | |
| Hypergeometric2F1 | Gauss hypergeometric function | |
| ZZ | Integers | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("ce9a39"),
Formula(Equal(ChebyshevU(n, x), Mul(Add(n, 1), Hypergeometric2F1(Neg(n), Add(n, 2), Div(3, 2), Div(Sub(1, x), 2))))),
Variables(n, x),
Assumptions(And(Element(n, ZZ), Element(x, CC))))