Fungrim home page

Fungrim entry: ce5e03

Un ⁣(x)=xUn1 ⁣(x)+Tn ⁣(x)U_{n}\!\left(x\right) = x U_{n - 1}\!\left(x\right) + T_{n}\!\left(x\right)
Assumptions:nZandxCn \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}
TeX:
U_{n}\!\left(x\right) = x U_{n - 1}\!\left(x\right) + T_{n}\!\left(x\right)

n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
ChebyshevUUn ⁣(x)U_{n}\!\left(x\right) Chebyshev polynomial of the second kind
ChebyshevTTn ⁣(x)T_{n}\!\left(x\right) Chebyshev polynomial of the first kind
ZZZ\mathbb{Z} Integers
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("ce5e03"),
    Formula(Equal(ChebyshevU(n, x), Add(Mul(x, ChebyshevU(Sub(n, 1), x)), ChebyshevT(n, x)))),
    Variables(n, x),
    Assumptions(And(Element(n, ZZ), Element(x, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC