Assumptions:
TeX:
\sum_{k=N}^{U} f(k) = \int_{N}^{U} f(t) \, dt + \frac{f(N) + f(U)}{2} + \sum_{k=1}^{M} \frac{B_{2 k}}{\left(2 k\right)!} \left({f}^{(2 k - 1)}(U) - {f}^{(2 k - 1)}(N)\right) + \int_{N}^{U} \frac{B_{2 M}\!\left(t - \left\lfloor t \right\rfloor\right)}{\left(2 M\right)!} {f}^{(2 M)}(t) \, dt N \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; U \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; N \le U \;\mathbin{\operatorname{and}}\; M \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; f(t) \text{ is holomorphic on } t \in \left[N, U\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Integral | Integral | |
BernoulliB | Bernoulli number | |
Factorial | Factorial | |
ComplexDerivative | Complex derivative | |
BernoulliPolynomial | Bernoulli polynomial | |
ZZ | Integers | |
ZZGreaterEqual | Integers greater than or equal to n | |
IsHolomorphic | Holomorphic predicate | |
ClosedInterval | Closed interval |
Source code for this entry:
Entry(ID("ce2272"), Formula(Equal(Sum(f(k), For(k, N, U)), Add(Add(Integral(f(t), For(t, N, U)), Add(Div(Add(f(N), f(U)), 2), Sum(Mul(Div(BernoulliB(Mul(2, k)), Factorial(Mul(2, k))), Sub(ComplexDerivative(f(t), For(t, U, Sub(Mul(2, k), 1))), ComplexDerivative(f(t), For(t, N, Sub(Mul(2, k), 1))))), For(k, 1, M)))), Integral(Mul(Div(BernoulliPolynomial(Mul(2, M), Sub(t, Floor(t))), Factorial(Mul(2, M))), ComplexDerivative(f(t), For(t, t, Mul(2, M)))), For(t, N, U))))), Variables(f, N, U, M), Assumptions(And(Element(N, ZZ), Element(U, ZZ), LessEqual(N, U), Element(M, ZZGreaterEqual(1)), IsHolomorphic(f(t), ForElement(t, Subset(ClosedInterval(N, U)))))))