Assumptions:
TeX:
\left|J_{\nu}\!\left(z\right)\right| \le \frac{1}{\Gamma\!\left(\nu + 1\right)} {\left|\frac{z}{2}\right|}^{\nu} {e}^{\left|\operatorname{Im}(z)\right|} \nu \in \left[-\frac{1}{2}, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
BesselJ | Bessel function of the first kind | |
Gamma | Gamma function | |
Pow | Power | |
Exp | Exponential function | |
Im | Imaginary part | |
ClosedOpenInterval | Closed-open interval | |
Infinity | Positive infinity | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("cc4572"), Formula(LessEqual(Abs(BesselJ(nu, z)), Mul(Mul(Div(1, Gamma(Add(nu, 1))), Pow(Abs(Div(z, 2)), nu)), Exp(Abs(Im(z)))))), Variables(nu, z), Assumptions(And(Element(nu, ClosedOpenInterval(Neg(Div(1, 2)), Infinity)), Element(z, SetMinus(CC, Set(0))))))