Assumptions:
TeX:
\mathop{\text{Continuation}}\limits_{\displaystyle{t: 0 \rightsquigarrow \theta}} \, \log\!\left(R {e}^{i t}\right) = \log(R) + \theta i
R \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; \theta \in \mathbb{R}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| AnalyticContinuation | Analytic continuation | |
| Log | Natural logarithm | |
| Exp | Exponential function | |
| ConstI | Imaginary unit | |
| OpenInterval | Open interval | |
| Infinity | Positive infinity | |
| RR | Real numbers |
Source code for this entry:
Entry(ID("cbfd70"),
Formula(Equal(AnalyticContinuation(Log(Mul(R, Exp(Mul(ConstI, t)))), For(t, 0, theta)), Add(Log(R), Mul(theta, ConstI)))),
Variables(R, theta),
Assumptions(And(Element(R, OpenInterval(0, Infinity)), Element(theta, RR))))