Assumptions:
TeX:
\mathop{\text{Continuation}}\limits_{\displaystyle{t: 0 \rightsquigarrow \theta}} \, \log\!\left(R {e}^{i t}\right) = \log(R) + \theta i R \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; \theta \in \mathbb{R}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
AnalyticContinuation | Analytic continuation | |
Log | Natural logarithm | |
Exp | Exponential function | |
ConstI | Imaginary unit | |
OpenInterval | Open interval | |
Infinity | Positive infinity | |
RR | Real numbers |
Source code for this entry:
Entry(ID("cbfd70"), Formula(Equal(AnalyticContinuation(Log(Mul(R, Exp(Mul(ConstI, t)))), For(t, 0, theta)), Add(Log(R), Mul(theta, ConstI)))), Variables(R, theta), Assumptions(And(Element(R, OpenInterval(0, Infinity)), Element(theta, RR))))