Fungrim home page

Fungrim entry: cbcad9

Ra ⁣([b1,b2,,bn],[0,z2,z3,,zn])=B ⁣(a,cb1)B ⁣(a,c)Ra ⁣([b2,b3,,bn],[z2,z3,,zn])   where c=a+k=1nbkR_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[0, z_{2}, z_{3}, \ldots, z_{n}\right]\right) = \frac{\mathrm{B}\!\left(a, c - b_{1}\right)}{\mathrm{B}\!\left(a, c\right)} R_{-a}\!\left(\left[b_{2}, b_{3}, \ldots, b_{n}\right], \left[z_{2}, z_{3}, \ldots, z_{n}\right]\right)\; \text{ where } c = -a + \sum_{k=1}^{n} b_{k}
Assumptions:aR  and  nZ1  and  (bkR   for all k{1,2,,n})  and  (zkC   for all k{2,3,,n})  and  k=1nbk>0  and  k=2nbk>aa \in \mathbb{R} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \left(b_{k} \in \mathbb{R} \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \left(z_{k} \in \mathbb{C} \;\text{ for all } k \in \{2, 3, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \sum_{k=1}^{n} b_{k} > 0 \;\mathbin{\operatorname{and}}\; \sum_{k=2}^{n} b_{k} > a
References:
  • https://dlmf.nist.gov/19.16
TeX:
R_{-a}\!\left(\left[b_{1}, b_{2}, \ldots, b_{n}\right], \left[0, z_{2}, z_{3}, \ldots, z_{n}\right]\right) = \frac{\mathrm{B}\!\left(a, c - b_{1}\right)}{\mathrm{B}\!\left(a, c\right)} R_{-a}\!\left(\left[b_{2}, b_{3}, \ldots, b_{n}\right], \left[z_{2}, z_{3}, \ldots, z_{n}\right]\right)\; \text{ where } c = -a + \sum_{k=1}^{n} b_{k}

a \in \mathbb{R} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \left(b_{k} \in \mathbb{R} \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \left(z_{k} \in \mathbb{C} \;\text{ for all } k \in \{2, 3, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \sum_{k=1}^{n} b_{k} > 0 \;\mathbin{\operatorname{and}}\; \sum_{k=2}^{n} b_{k} > a
Definitions:
Fungrim symbol Notation Short description
CarlsonHypergeometricRRa ⁣(b,z)R_{-a}\!\left(b, z\right) Carlson multivariate hypergeometric function
BetaFunctionB ⁣(a,b)\mathrm{B}\!\left(a, b\right) Beta function
Sumnf(n)\sum_{n} f(n) Sum
RRR\mathbb{R} Real numbers
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Range{a,a+1,,b}\{a, a + 1, \ldots, b\} Integers between given endpoints
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("cbcad9"),
    Formula(Equal(CarlsonHypergeometricR(Neg(a), List(b_(k), For(k, 1, n)), List(0, Step(z_(k), For(k, 2, n)))), Where(Mul(Div(BetaFunction(a, Sub(c, b_(1))), BetaFunction(a, c)), CarlsonHypergeometricR(Neg(a), List(b_(k), For(k, 2, n)), List(z_(k), For(k, 2, n)))), Def(c, Add(Neg(a), Sum(b_(k), For(k, 1, n))))))),
    Variables(a, b_, z_, n),
    Assumptions(And(Element(a, RR), Element(n, ZZGreaterEqual(1)), All(Element(b_(k), RR), ForElement(k, Range(1, n))), All(Element(z_(k), CC), ForElement(k, Range(2, n))), Greater(Sum(b_(k), For(k, 1, n)), 0), Greater(Sum(b_(k), For(k, 2, n)), a))),
    References("https://dlmf.nist.gov/19.16"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC