Fungrim home page

Fungrim entry: cb9f61

lcm ⁣(ad,bd)=lcm ⁣(a,b)d\operatorname{lcm}\!\left(\frac{a}{d}, \frac{b}{d}\right) = \frac{\operatorname{lcm}\!\left(a, b\right)}{\left|d\right|}
Assumptions:aZandbZanddZanddaanddba \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, b \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, d \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, d \mid a \,\mathbin{\operatorname{and}}\, d \mid b
TeX:
\operatorname{lcm}\!\left(\frac{a}{d}, \frac{b}{d}\right) = \frac{\operatorname{lcm}\!\left(a, b\right)}{\left|d\right|}

a \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, b \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, d \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, d \mid a \,\mathbin{\operatorname{and}}\, d \mid b
Definitions:
Fungrim symbol Notation Short description
LCMlcm ⁣(a,b)\operatorname{lcm}\!\left(a, b\right) Least common multiple
Absz\left|z\right| Absolute value
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("cb9f61"),
    Formula(Equal(LCM(Div(a, d), Div(b, d)), Div(LCM(a, b), Abs(d)))),
    Variables(a, b, d),
    Assumptions(And(Element(a, ZZ), Element(b, ZZ), Element(d, ZZ), Divides(d, a), Divides(d, b))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC