Assumptions:
References:
- L. Fekih-Ahmed, On the Power Series Expansion of the Reciprocal Gamma Function, https://arxiv.org/abs/1407.5983 (simplified version of (1.5))
TeX:
\left|\frac{1}{n !} \left[ \frac{d^{n}}{{d x}^{n}} \frac{1}{\Gamma(x)} \right]_{x = 0}\right| \le \frac{2}{\sqrt{n !}} n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
Factorial | Factorial | |
ComplexDerivative | Complex derivative | |
Gamma | Gamma function | |
Sqrt | Principal square root | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("cb5071"), Formula(LessEqual(Abs(Mul(Div(1, Factorial(n)), ComplexDerivative(Div(1, Gamma(x)), For(x, 0, n)))), Div(2, Sqrt(Factorial(n))))), Variables(n), Assumptions(And(Element(n, ZZGreaterEqual(0)))), References("L. Fekih-Ahmed, On the Power Series Expansion of the Reciprocal Gamma Function, https://arxiv.org/abs/1407.5983 (simplified version of (1.5))"))