Assumptions:
TeX:
\operatorname{Re}\!\left({\left(a + b i\right)}^{c + d i}\right) = {M}^{c} {e}^{-d \theta} \cos\!\left(c \theta + d \log(M)\right)\; \text{ where } M = \left|a + b i\right|,\;\theta = \arg\!\left(a + b i\right) a \in \mathbb{R} \;\mathbin{\operatorname{and}}\; b \in \mathbb{R} \;\mathbin{\operatorname{and}}\; c \in \mathbb{R} \;\mathbin{\operatorname{and}}\; d \in \mathbb{R} \;\mathbin{\operatorname{and}}\; a + b i \ne 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Re | Real part | |
Pow | Power | |
ConstI | Imaginary unit | |
Exp | Exponential function | |
Cos | Cosine | |
Log | Natural logarithm | |
Abs | Absolute value | |
Arg | Complex argument | |
RR | Real numbers |
Source code for this entry:
Entry(ID("caf8cf"), Formula(Equal(Re(Pow(Add(a, Mul(b, ConstI)), Add(c, Mul(d, ConstI)))), Where(Mul(Mul(Pow(M, c), Exp(Neg(Mul(d, theta)))), Cos(Add(Mul(c, theta), Mul(d, Log(M))))), Equal(M, Abs(Add(a, Mul(b, ConstI)))), Equal(theta, Arg(Add(a, Mul(b, ConstI))))))), Variables(a, b, c, d), Assumptions(And(Element(a, RR), Element(b, RR), Element(c, RR), Element(d, RR), NotEqual(Add(a, Mul(b, ConstI)), 0))))