TeX:
\mathop{\operatorname{zeros}\,}\limits_{\tau \in \mathbb{H}} E_{2}\!\left(\tau\right) = \left\{ \tau + n : \tau \in \mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{H},\,\operatorname{Re}(z) \in \left[-1 / 2, 1 / 2\right)} E_{2}\!\left(z\right) \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z} \right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Zeros | Zeros (roots) of function | |
EisensteinE | Normalized Eisenstein series | |
HH | Upper complex half-plane | |
Re | Real part | |
ClosedOpenInterval | Closed-open interval | |
ZZ | Integers |
Source code for this entry:
Entry(ID("cae067"), Formula(Equal(Zeros(EisensteinE(2, tau), ForElement(tau, HH)), Set(Add(tau, n), For(Tuple(tau, n)), And(Element(tau, Zeros(EisensteinE(2, z), For(z), And(Element(z, HH), Element(Re(z), ClosedOpenInterval(Neg(Div(1, 2)), Div(1, 2)))))), Element(n, ZZ))))))